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1 SUMMARY

1 Summary

In this report we propose a novel design for a chemical sensor which, if successful, would provide a new
paradigm for chemical sensors. It operates by systematically probing a universal physical property (atomic
vibrations), and would be tuneable simply by the application of a bias voltage. This is in contrast to typical
sensors currently available (including those based on nanowires) which are �nely tuned to speci�c chemical
species, and often exploit charge transfer reactions. We suggest that the new sensors be made from InAs
with InP layers, as there is a high level of existing expertise available for constructing nanowires from them.
The InP will be used to form three barriers between which will lie two quantum wells. This design could
pave the way for versatile sensors compatible with standard semiconductor devices that could be compact,
low power, fast and selective.

The operation of these devices is inspired by a proposed mechanism for odorant recognition in human
beings suggested by Luca Turin, and becoming increasingly plausible as new experiments are performed to
test it. The devices operate as follows. The quantum wells formed in the InAs wires by the InP barriers
contain localized and sharp electronic states that de�ne reference energies. When a bias is applied along the
length of the wire the levels in one well become o�set relative to those in the other. Under these conditions
the elastic resonant tunneling possible with zero bias is frustrated. However, if an electron traveling from a
state in one well to a state in the neighboring one can exchange the right amount of energy with a neighboring
odorant molecule by making it oscillate, then resonance can be restored. The resulting rise in current is
the signal that a molecule with the right vibrational frequency is present, and we have a device acting as a
sensor.

Here we report the calculations we have performed to characterize this novel nanowire device. Two
types of calculation are considered. For the �rst, we use a simple scheme (e�ective mass approximation)
to produce a device simulator that predicts the variation of current with applied bias (the basic electrical
characteristics of the device). This simulator was written speci�cally for this project, and gives us control
over the approximations used, and was tailored for the needs of this work. The second type of calculation is
based on a �rst principles method (density functional theory), and gives atomic level information. It turned
out that the choice of approximation that we make is very important (hybrid functionals are essential for
providing a correct description of the electrons). These precise calculations cannot be used yet to give the
current as a function of bias (we do not have access to suitable software), but they give information that
can be related directly to the electrical properties. They therefore act as an important check on the results
from our device simulator. For the 50Å and 150Å wells we see clear signatures of the localized states in the
InAs wells in the band structure and the densities of states. Furthermore we can see the tapering out of the
resonances at the interface between the wells and the barriers.

Using our device simulator we have investigated the dependence of the design parameters (the widths of
the tunneling barriers, the widths of the quantum wells, the radius of the nanowire, the density of dopants
and the temperature). We �nd that the two outer InP barriers control the width of the resonances in the
quantum wells. This contributes to the resolution of the device (how far apart two vibrational frequencies
must be to be distinguished), and the total electric current. The middle barrier determines the interaction
between the resonances in the wells, and needs to be thick enough to prevent too strong a coupling, but not
so wide as to reduce the current below measurable levels. The widths of the quantum wells must be large
enough to allow charge injection into the lowest resonant state, but small enough to keep the resonances far
enough apart so that odorants do not excite electrons inside a well (reducing the selectivity of the device).

Using the data acquired, we have identi�ed a promising candidate device. It has a radius of 200Å , has
two outer barriers of width 30Å between which is a third barrier also of width 30Å. The distance between the
outer barriers and the middle barrier (the quantum well width) is 100Å. We believe this device should have
the necessary properties at room temperature, though a gate may need to be added to control the carrier
concentration.
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2 INTRODUCTION

2 Introduction

Checking planes for explosives and nerve agents, monitoring food quality and testing human breath for
signs of disease are some of the applications of chemical sensors. The ideal sensor would respond to a large
number of chemicals over a range of concentrations in a way that is easy to interpret. Many devices have
been proposed and built which can be optimized to detect particular sets of compounds, but generally lack
the ability to be tuned to detect user speci�ed molecules while in operation. A few of the more important
devices are as follows [7, 9, 16]:

• Metal-oxide semiconductors can change their electrical resistance when chemical species adsorb onto
their surfaces. Oxygen in the atmosphere oxidizes the surface (removes electrons from the conduction
band) lowering the conductivity. Reducing gases adsorbed onto the surface can increase the conduc-
tivity by injecting electrons into the conduction band. The main problems with this method are the
need to run at high temperature, the limited selectivity, and the susceptibility to poisoning of the
surface. Metal oxides can also be used in Field E�ect Transistors (FET) in which the exposed gates
are made from catalysts whose charge varies when gases are adsorbed, thereby modifying the channel
conductance.

• Conducting polymers vary their conductance when molecules are adsorbed, so molecules can be de-
tected by the change in current. The polymers can be tuned for speci�c systems by modifying attached
groups or counter-ions. The main problems with this approach are the very long response times, inher-
ent time- and temperature-dependent drift, poor batch-to-batch reproducibility and the high cost of
sensor fabrication. A variation on this involves putting conducting carbon-black powder into a polymer
which is then painted across the foils of a capacitor. Di�usion of gas phase molecules into the polymer
creates a characteristic swelling which separates the conducting particles and increasing the measured
resistance across the capacitor. Polymers have also recently been used for chemical FETs.

• Piezoelectric crystals change their vibrational frequencies when molecules bind to the surface. Se-
lectivity can be achieved by the use of surface coatings. The main problems with this method are
batch-to-batch reproducibility and the di�culty of replacing sensors. A variation of this is to use
atomic force microscope cantilevers, and monitor their change in resonance frequency when molecules
adsorb.

• Fiber-optic chemical sensors use a dye whose �uorescence emission spectrum is very sensitive to the
polarity of its surroundings, and which is embedded in a polymer matrix. By varying the polymer,
di�erent responses can be achieved. The polymers swell when molecules di�use in, which can be
detected from the change in �uorescence, and hence monitored optically. While they are fast, small,
versatile and inexpensive, their lifetimes are limited by photobleaching and they require additional
sophisticated instruments for monitoring.

• Ion mobility spectrometry involves the separation of species after ionization by means of an electric
�eld. Species separate according to their mobilities.

• Infrared spectroscopy has a long and highly successful history of identifying molecules, and is now used
as part of chemical sensors. It works by probing the vibrational frequencies of molecules by using light
with the same frequency as the vibrations. Particularly important for sensors is nondispersive infrared
(NDIR) in which the absorption of a single frequency of light is monitored. A clear limitation is the
fact that the frequency is �xed rather than tuneable, and thus restricted to detecting those molecules
that have vibrational modes with that frequency. This is the device most close to the one we propose
here.

More recently there has been huge interest in the use of carbon nanotubes as chemical sensors. There is an
excellent recent review by Kau�man and Star[18] of the current state of the art. Clearly great sensitivity
can be achieved because of the delicate nature of the electronic structure of carbon nanotubes which is
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2 INTRODUCTION

easily disrupted by adsorbates, leading to an easily measurable change in conductivity. However, traditional
mechanisms (notably charge transfer) with their inherent limitations are being applied (such as having to
design speci�c sensors for particular gases).

It is clear from the above that there are many ingenious suggestions for electronic noses, and that they
have a certain degree of �exibility, but there are hard constraints nevertheless. Many of the mechanisms
depend on rather speci�c chemical properties (such as being oxidizing or reducing agents), or are di�cult to
modify to accommodate new chemical species. This is in contrast to the human nose that can respond to
endless new chemical species, provided the molecules are small enough to �t the receptors.

We plan to develop a versatile chemical sensor that can be tuned to respond to a particular type of
molecule simply by the application of a bias. The design is motivated by a recent theory of odorant detection
in humans[6, 35] that was in turn inspired by Inelastic Electron Tunneling Spectroscopy (IETS)[1]. The
theory proposes that molecular recognition occurs when the exchange of energy between a molecular vibration
and a mobile electron enables the electron to move from one site to another. IETS has a long history of being
used to identify organic molecules[22, 32]. Recently it has been considered by the group of David Galipeau
as a means to construct a chemical sensor employing the original device structure (two metal �lms separated
by an insulating layer), but has not been completely successful[5].

Figure 1: Left: cartoon of original IETS experimental setup. Right: cartoon of the Turin mechanism of
odorant identi�cation.

To understand why that implementation has been problematic consider the original IETS experimental
setup (see �gure 1). The current is measured as a function of bias V , where the electrode plates are
conventional metals and the insulating layer contains the sample whose vibrational structure is to be probed.
When V > hν (where ν is the vibrational frequency of the oscillators coupling to the tunneling electrons and
h is Planck's constant) it becomes possible for electrons to excite phonons and tunnel to the right hand side.
Elevated temperatures produce broadening of the Fermi surfaces of the metals (which introduces uncertainty
in the voltage at which inelastic tunneling begins) and allow thermally excited oscillators to give up energy
to the electrons (which introduces additional contributions to the current). Both of these factors degrade
the resolution of the spectrometer as temperature increases, thus forcing the measurements to be made at
low temperature.

On the other hand the proposed biological mechanism (which must operate at body temperature) is based
on two narrow reference electronic levels thereby overcoming this di�culty[6, 35, 36] (see the right-hand side
of Figure 1). The electron starts in the donor level (labelled D in Figure 1) and has an energy corresponding
to that level that is insensitive to temperature. It can tunnel to the acceptor level (labelled A in Figure 1)
which also has a well de�ned energy that is ∆E less than the donor energy. However, to conserve energy the
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2 INTRODUCTION

Molecule Group Mode Energy (cm-1) Energy (eV)

Benzene C-H stretch 3062 0.38
bend 1326-673 0.16-0.08

Ring deform 1010-410 0.13-0.05
Methanol O-H stretch 3681 0.46

C-O stretch 1033 0.13
Acetic acid C=O stretch 1788 0.22

C=O bend 642 0.08

Table 1: These vibrational frequencies are taken from the �Tables of Molecular Vibrational Frequencies
Consolidated Volume I� produced by Shimanouchi [30].

mobile electron must lose ∆E in energy to something else. The energy could be lost by exciting a neighboring
odorant molecule provided it can vibrate with a frequency ν such that ∆E = hν. In the Turin theory of
odorant identi�cation, the successful arrival of an electron at the acceptor site indicates the presence of an
odorant.

Figure 2: Cartoon of the potential pro�le for the nanowire resonant tunneling device under bias. The shaded
areas are populated by electrons.

We anticipate using a semiconductor nanowire containing a triple barrier, double well resonant tunneling
diode (TBDW RTD) to provide similar sharp levels in a solid-state device. We assume the device will be
made from InAs with InP for the potential barriers: this choice of materials is made because of the huge
experience now gained using them to construct very thin wires with atomically sharp interfaces (see, for
example, [4, 8, 10]). The chemical selectivity of the device is tuned by adjusting the energy splitting between
these levels by applying a voltage (see Figure 2). This selectivity is the key property of the device that
distinguishes it from currently existing chemical sensors.

Typical vibrational frequencies of common molecular groups are well known. Some examples are shown
in Table 1. The main conclusion to draw from this table is that typical frequencies are of order 0.1eV, and
we would like a resolution of about 0.01eV to be able to distinguish between groups.

Below we describe calculations to determine the characteristics of nanowire devices. What we want
to know is the variation of the current with applied bias (the I-V curve). We have constructed a simple
device simulator to compute this. It also provides the probability of transmission of an electron of a given
energy through the device: this information makes interpretation of the I-V characteristics much easier.
This simulator is based on a very simple model of electron motion (the e�ective mass approximation) and
so is unable to provide certain information. Thus we have also carried out density functional theory (DFT)
calculations that give us more detailed information about the electronic structure. In particular it provides
insight into what happens at the interface between the InAs and InP regions (atomic rearrangement, charge
transfer, electron energy gap, etc.).

However, we stress that we can only make promising suggestions for devices here because there are neces-
sary approximation we must make. Features we know to be missing include: the distribution of dopant atoms,
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3 METHODS, ASSUMPTIONS AND PROCEDURES

Figure 3: a) Device with a single InP barrier. b) Device with two InP barriers that create an InAs quantum
dot.

the e�ect of the environment (which will be able to exchange energy with the current carrying electrons),
electron-phonon interactions in the device, electron repulsion within the quantum wells (possibly leading to
Coulomb blockade at low temperatures) and electron-electron scattering. To obtain a full understanding the
devices will need to be investigated experimentally.

3 Methods, Assumptions and Procedures

3.1 Experimental Setup

As discussed above, the devices we are interested in are nanowires made from InAs with regions of InP
introduced to act as barriers to electron �ow. These devices are connected at each end to a DC power
source, and the precise dependence of the current that �ows on the applied voltage will be determined by
the the thickness of the wire, the width, number and spacing of the InP barrier, the temperature, and the
number of free carriers in the leads. Our purpose here is to determine by computer modeling this variation
of current with voltage.

An important experimental demonstration of the properties of these devices has been reported in two
seminal papers by Björk in 2002 [3, 4]. Two devices are considered in the latter paper, one with a single
InP barrier, and one with two barriers that create an InAs quantum dot (see Figure 3). The nanowire
heterostructures are fabricated by the vapor-liquid-solid technique using gold nano-particle as the metal
catalyst. The In, P and As are introduced as molecular species in which one atom of In, P or As is bound
to hydrocarbons. These hydrocarbons introduce a small amount of carbon impurities (10−16/cm3), which
in turn act as electron donors, and hence de�ne the number of free carriers available.

The electrical characteristics for the single barrier device are shown in Figure 4. We see that making
the barrier thicker reduces the current. For the thick barrier the current is due to thermionic excitations as
there is very little tunneling. This allows the e�ective barrier height due to InP to be found. It depends on
the applied voltage because charge accumulation modi�es the potential the electrons see, but for zero bias it
is found to be about 0.6V1. Using the known band gaps[19] for InAs (0.43 eV) and InP (1.42 eV) we obtain
the band o�set diagram given in the left panel of Figure 5. With two barriers, we obtain a resonance in
the current at about 80 mV bias at 4.2 K. This is attributed to a narrow quantized state in the quantum
dot. This feature is important for this project as the electronic chemical sensor is designed to operate by the
inelastic transfer of charge between two such states in neighboring quantum wells. This feature is analyzed
below.

An important characteristic experimental quantity is the size of the electric currents. These are of order
10−12A → 10−9A [3]. These correspond to 107 to 1010 e/s. For the largest current this corresponds to

1This is obtained from the equation I(V, t) = constT 2eeV/kT , and the data is shown in the right panel of Figure 5
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Figure 4: The left panel shows electrical characteristics for the single barrier device, while the right panel
shows the characteristics for a double barrier device.
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Figure 5: Left: The band o�set at InAs-InP junction. Right: Variation of current with temperature, with
e�ective barrier heights indicated; taken from [3].

one electron running through the device every 10−10s. Using the expression for the mobility eτ/m∗ and
noting that for InAs its value is about 30, 000cm2V−1s−1 [19], we can estimate the time between collisions
(τ) which is of order 10−13s. Thus an electron will make of order 103 collisions between successive escapes
past the barriers. We can therefore conclude that the electrons will be in equilibrium in the leads. This is
an important fact we will exploit in our calculations.

3.2 E�ective mass approximation calculations

The theory of electron motion used for the device simulator is the e�ective mass approximation, a technique
frequently used to determine the properties of nanoscale electronic devices. It starts from the electron
wavefunctions and energies obtained from band theory, and then uses a set of approximations to provide
an e�cient way to compute the e�ect of small changes in the potential. The resulting equation look like
the Shrödinger equation, except that the potential is now the perturbation, the wave function is a smooth
envelope function, and all the complexity of the crystal is taken account of through a change in the electron
mass. For more information see Chapter 4 of �Theory of Defects in Solids� by Stoneham [33]. Below
we summarize some of the technical points implemented in our device simulator to perform self-consistent
calculations of electric current �ow within this approximation.

3.2.1 The Potential Pro�le

The manner in which electrons travel through the nanowire depends sensitively on the potential landscape.
We have noted the strong e�ects of the InP barriers. But when a bias is applied, charge will accumulate
within the wire, and this will generate electric �elds that will also modify the potential landscape. We now
discuss the set of approximations we have used to estimate this potential pro�le.

Because the electrons in the nanowire leads (the regions either side of the central region containing the InP
barrier) are at equilibrium, they can be characterized by chemical potentials µL and µR for the left and right
leads respectively (see �gure 6). In general, the electron chemical potential is the energy gained (lost) when
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Figure 6: The single barrier device under an applied bias.

an electron is added (removed) from system. In Figure 6 the battery provides the energy (∆µ = µL − µR)
needed to transfer an electron from the right lead to the left. The maximum energy the battery can provide
to an electron is eV (where V is the voltage of the battery), thus electron transfer stops when ∆µ = eV
(equilibrium). From this argument we see that the di�erence in chemical potential originates with an excess
of electrons in the left lead and a corresponding de�cit in the right lead. The electrons will then arrange
themselves so as to minimize their energy. We thus have the outlines of a practical scheme for �nding the
potential pro�le: we have two regions with di�erent chemical potentials that will reach equilibrium when
the electrons relax to minimize their energies, subject to the chemical potential di�erence being kept �xed
at the bias potential from the battery.

To �ll in the computational details, consider the Kohn-Sham formalism of Density Functional Theory
(DFT)[26]. This gives us a recipe for �nding a potential for the electrons from the density,

v(r) = vext(r) +
ˆ

d3r′
ρ(r′)

4πε0|r− r′|
+ vxc[ρ] (1)

for �nding the density from the wavefunctions of the electrons,

ρ(r) =
∑
n

fn|ψn(r)|2 (2)

and for �nding the wavefunctions from the potential

−~2

2m
∇2ψn + vψn = εnψn (3)

This procedure is computationally expensive, so we use an approximation based on the assumption that
the change in potential in a given lead due to the application of a bias is slowly varying. If the density is
ρ0(r, µ̄ − v̄) for a given chemical potential µ̄ in the isolated lead with average potential v̄, and the change
in potential is ∆v(r), then the approximation we shall use is that ρ(r) ≈ ρ0(r, µ− v̄ −∆v(r)). This is good
provided electrons remain coherent only over distances that are small relative to distances over which the
potential varies.

If the change in potential is dominated by classical electrostatics (which is certainly the case for the
interaction between the leads, but less obviously so within a given lead) then we can make the Hartree
approximation, in which case the change in potential satis�es the Poisson equation:

∇2∆v(r) = −
[
ρ(r)− ρ0(r)

ε0εr

]
e2 (4)
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Figure 7: Regions in the one barrier device with di�erent chemical potential.

Let the nanowire be aligned along the z axis (see Figure 7). The important variations in the potential
are thus also along the z axis, so we shall neglect the variations in x and y for a given z. Thus we have:

d2∆v
dz2

≈ − e2

ε0εr
(ρ(z)− ρ0(z))

≈ − e2

ε0εr
[ρ0(z, µ(z)− v̄ −∆v(z))− ρ0(z, µ̄− v̄)] (5)

where µ(z) = µL in the left lead, µ(z) = µR in the right lead, and ρ(z) − ρ0(z) = 0 between the leads (i.e.
µ(z)−∆v(z) = µ̄). We can solve equation (5) for the device region immediately (see �gure 7):

∆v(z) = ∆v(0) + eE · z 0 ≤ z ≤ w (6)

To estimate the potential in the leads we make a linear approximation:

ρ0(z, µ(z)− v̄ −∆v(z))− ρ0(z, µ̄− v̄) ≈

{
−∆v(z)∂ρ0∂µ (z, µ̄− v̄) z < 0
−(∆µ+ ∆v(z))∂ρ0∂µ (z, µ̄− v̄) z > w

(7)

where we have set µL = µ̄. We now make our �nal approximation, which is to treat ∂ρ0/∂µ as a constant2.
We now de�ne γ2 = (e2/ε0εr)∂ρ0/∂µ, and Poisson's equation now becomes:

d2∆v
dz2

=

 +γ2∆v z < 0
0 0 ≤ z ≤ w
+γ2(∆µ+ ∆v) z > w

(8)

The boundary conditions are ∆v(−∞) = 0 and ∆v(+∞) = −∆µ. This has the solution:

∆v(z) =


− ∆µ

2+γwe
γz z ≤ 0

− ∆µ
2+γw (1 + γz) 0 ≤ z ≤ w

∆µ+ ∆µ
2+γwe

γ(w−z) z ≥ w
(9)

When the device simulator includes band bending in the leads, the linear response solution above is used
as an initial guess, and is then re�ned by an explicit solution of Poisson's equation. This is achieved by
writing equation (5) as a �nite di�erence equation:

1
δ2

[vn+1 − 2vn + vn−1] = − e2

ε0εr
∆ρn (n ∈ {0, . . . , N − 1}) (10)

where δ is the spacing between neighboring mesh points, which is then solved using a very e�cient algorithm
from Numerical Recipes (tridag) subject to the boundary conditions v−1 = 0 and vN = −∆µ.

The distance over which the potential varies in the leads is governed by the quantity α. This depends
strongly on the number of free carriers. For the concentration found from the dopants experimentally

2This can be justi�ed on the basis that the smooth envelope functions of the e�ective mass approximation average over the
atomic detail.
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Figure 8: Plot of ∆v(z).

Figure 9: The nanowire is treated as a perfect cylinder with in�nitely hard walls.

(∼ 1016cm−3[37]), α ∼ 6 × 10−3Å
−1
, which gives a distance of 1/γ ∼ 170Å.This is quite a large distance,

so band bending in the leads can probably be neglected in the transport calculations. Furthermore, it is
unclear whether including band bending always improves the accuracy. The problem is the following. The
formalism for computing the current assumes that the electrons arrive from ±∞ and undergo no scattering
until they reach the device (0 ≤ z ≤ w). This means that the electrons in the well (energies < 0) to the left
of the device (z < 0) formed by the charge redistribution do not contribute. But this contradicts our earlier
discussion about the electrons being in thermal equilibrium: this requires substantial scattering in the leads
resulting in all states having a thermal population. Once thermal equilibrium is reached, all the electrons
can contribute to the current. Thus it might be better to ignore band bending, but adjust the bias to include
the e�ect of the potential drop in the leads. From our simple linear response calculation the voltage drop is
2∆µ/(2 + γw) = ∆µ/(1 + γw/2), which could be a signi�cant fraction of the applied voltage. Using values
for the RTD of Björk, w = 250Å, and γ ∼ 6× 10−3Å

−1
giving the drop as 0.57∆µ.

In the simulations below we have decided to ignore band bending in the leads, and have just retained the
linear voltage drop across the device.

3.2.2 The Electron Current

To compute the electron current we need wavefunctions, which means we need to solve Schrödinger's equation.
Here we describe the formalism for a simple scheme within the e�ective mass approximation, from which we
obtain expressions that we can easily compute and interpret.

We treat the nanowire as a perfect cylinder with in�nitely hard walls (�gure 9). Further, we assume that
the potential is piecewise constant down the length of the tube, depending only on z, and not r or θ. In one
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l J0 J1 J2

1 2.4048 3.8317 5.1356
2 5.5201 7.0156 8.4172
3 8.6537 10.1735 11.6198

Table 2: Table of values of xml which that Jm(xml) = 0, for m = 1, 2, 3.

of these regions Schrödinger's equation is

− ~2

2m∗
∇2ψ + V ψ = Eψ (11)

where the electron is assigned an e�ective mass m∗ which depends on the region. The boundary condition
on the wavefunction is that ψ goes to zero at r = R. Writing the Laplacian in cylindrical polar coordinates
we get:

∇2ψ =
∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂φ2
+
∂2ψ

∂z2
(12)

To allow us to separate variables we write the wavefunctions as

ψ(r, φ, z) = R(r)Φ(φ)Z(z) (13)

and Schrödinger's equation becomes:

R′′

R
+
R′

rR
+

1
r2

(
Φ′′

Φ

)
+
(
Z ′′

Z

)
= −2m∗

~2
(E − V ) = −α2 (14)

To ensure that the left hand side is a constant we require Φ′′/Φ and Z ′′/Z to be constant. This gives:

Φ(φ) = eimφ

Z(z) = eiqz

}
(15)

where m is an integer to ensure Φ(φ+ 2πm) = Φ(φ). The radial equations is then:

R′′

R
+
R′

rR
− m2

r2
= (q2 − α2) = −k2 (16)

which has the solutions R(r) = J|m|(kr) where Jm(x) is a Bessel function of the �rst kind. The allowed
values of k are determined by the boundary condition J|m|(kR) = 0. Some values of x such that J|m|(x) = 0
are given in table 2.

The total energy is thus given by:

Emlq = V +
~2

2m∗

(
q2 +

x2
|m|l

R2

)
(17)

The energy thus is composed of three parts: the potential energy (V ), a discrete set of contributions to the
kinetic energy from angular and radial motion (E⊥ml = (~2/2m∗)x2

|m|l/R
2) and a continuous contribution to

the kinetic energy from the motion along the wire (E‖q = ~2q2/(2m∗)). It is conventional to call a set of
states characterized by given values of m and l a channel. Some values of E⊥ml for two wire radii are shown
in Table 3.

To build up a wavefunction throughout the wire from the contributions in each region of constant potential
we match wavefunctions at the interfaces. Consider two neighboring regions n and n + 1. Let zn be the
position of the left hand end of region n. (see �gure 10). The wavefunction needs to be continuous everywhere,
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l J0 J1 J2

1 0.024 0.061 0.109
2 0.126 0.204 0.293
3 0.310 0.429 0.559

l J0 J1 J2

1 0.015 0.039 0.070
2 0.081 0.130 0.188
3 0.198 0.274 0.358

Table 3: Tables of minimum energies of individual channels for two wire radii. Left table, R=200Å; right
table R=250Å.

Figure 10: We divide the device into several regions, each with distinct potential and e�ective mass.

so ψn(zn+1) = ψn+1(zn+1). We cannot just match derivatives of the wavefunctions, as the e�ective mass in
each region can be di�erent. Thus we impose continuity of current, which gives:

1
m∗n

∂ψn
∂z

(zn+1) =
1

m∗n+1

∂ψn+1

∂z
(zn+1) (18)

For the wavefunctions to be continuous for every value of r and θ for a given z, m, l and k = x|m|l/R must
be the same in every region. Thus the wavefunction in region n has the form

ψn(r, φ, z) = eimφJ|m|(kr)
[
Ane

iqn(z−zn) +Bne
−iqn(z−zn)

]
(19)

with

qn =

√
2m∗n
~2

(E − Vn)− k2
|m|l (20)

We thus must use the matching conditions to �nd the unknown coe�cients An and Bn. This gives the
following relationships between coe�cients in neighboring regions:

(
An
Bn

)
=

(
e−iqn(zn+1−zn) 0

0 eiqn(zn+1−zn)

) 1
2

(
1 + qn+1

qn

m∗
n

m∗
n+1

)
1
2

(
1− qn+1

qn

m∗
n

m∗
n+1

)
1
2

(
1− qn+1

qn

m∗
n

m∗
n+1

)
1
2

(
1 + qn+1

qn

m∗
n

m∗
n+1

) 
×
(
An+1

Bn+1

)
(21)

= PnMn

(
An+1

Bn+1

)
(22)

If we have N regions (labeled 1 to N), then we have:(
Ã1

B̃1

)
=

(
A1e

iq1(z2−z1)

B1e
−iq1(z2−z1)

)
= M1P2M2 . . .PN−1MN−1

(
AN
BN

)
= S

(
AN
BN

)
=
(
S11 S12

S21 S22

)(
AN
BN

)
(23)
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We have introduced Ã1 and B̃1 to avoid working with z1 = −∞. For a wave traveling in from the left and
exiting on the right we can put Ã1 = 1, B̃1 = R; AN = tN and BN = 0. Then we have tN = 1/S11. The
quantity T = |tN |2 is called the transmission, and as shown below is central to the computation of the electric
current, and will be considered extensively in our analysis of devices. S11 is straightforward to compute by
repeated multiplication of matrices, the number of multiplications depending on the number of slices into
which the device is divided.

The choice of the number of regions depends on the shape of the potential pro�le. We are making the
approximation that in one region the potential is a constant. For slowly varying potential this will be quite
a good approximation for larger distances, whereas for rapidly varying potentials this will only be a good
approximation over short distance. We have found that a spacing of 10Åis usually su�cient, though 1Åcan
be used if higher accuracy is needed.

To compute the electric current from left to right we use the expectation value of the current operator
at z = z0:

Ĵ(z0) =
1

2m∗
(δ(z − z0)p̂+ p̂δ(z − z0)) (24)

where p̂ is the momentum operator (p̂ = −i~∂/∂z). If we evaluate the current to the right of the central
region, then we know that the wavefunction has the form:

ψmlq = AJ|m|(kmlr)eimφtNeiq(z−zN ) (25)

where A is a normalization constant. The total current originating from the left is given by:

IL =
∑
mlq

2
ˆ

d3rψ∗mlqĴ(z0)ψmlqf(Emlq − µL) (26)

where f(ε) is the Fermi function. This can be evaluated to give:

IL =
∑
ml

−e
π~

ˆ +∞

−∞
dε |tN (ε)|2f(ε− µL)

√
ε− ε⊥ml − VR
ε− ε⊥ml

(27)

where VR is the potential in the far right lead. If we include the contribution from the right hand side as
well we get the total current:

I =
∑
ml

−e
π~

ˆ +∞

−∞
dε |tN (ε)|2

√
ε− ε⊥ml − VR
ε− ε⊥ml

[f(ε− µL)− f(ε− µR)] (28)

3.2.3 Localized states in wells

A key concept with the multiple barrier structures is that of resonant states localized in the wells between
the barriers. To obtain an estimate of the energies of these levels we consider an isolated well (see Figure 11)
with depth V=0.6eV. The e�ective electron mass in the well is taken to be that for InAs (m∗W = 0.023me)
and that for the surrounding region to be that for InP (m∗B = 0.08me). The energies of the bound states
can be found as solutions to the following two equations (one for even parity wavefunctions, and one for odd
parity wavefunctions - c.f. Baym[2]),√

α− βx2 + βx cot(x/2) = 0 odd wavefunctions√
α− βx2 − βx tan(x/2) = 0 even wavefunctions (29)

where

α =
m∗B
me

(
a

a0

)2
V

Ry
≈ 0.012598

( a
Å

)2

β =
m∗B
m∗W

≈ 3.48 (30)
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Figure 11: Potential pro�le of a single well

Well width (Å) Energy (eV)

50 0.149
100 0.065
150 0.037
200 0.024

Table 4: Energies of lowest levels in a single well.

and the electron energy is given by

E =
me

m∗W

(a0

a

)2

x2Ry ≈ 165.65
(
Å
a

)2

x2 eV (31)

The energies of the lowest levels for several well widths are shown in Table 4. The lowest energy resonances
below can be determined approximately by adding the numbers in this table to the lowest energies for the
channels given in Table 3.

3.3 Density Functional Theory Calculations

To understand the electronic structure of the proposed InAs-InP nanowire in more detail we performed
Density Functional Theory (DFT) based methods to solve the Schrödinger equation for the electrons in the
system. DFT was �rst introduced by Hohenberg and Kohn in 1964 [15], when they proved the one-to-one
relationship between the ground state electron density and the external potential of a given system. This
work was extended by Kohn and Sham [20] to what is known as the Kohn-Sham ansatz, which reduced the
problem of solving a many-body Schrödinger equation to a set of single electron equations that give the same
ground state electron density as the full many-body equation. The Kohn-Sham equation for single electrons
is given as:

−~2

2m
∇2ψn,k + v(r, [n(r)])ψn,k = εn(k)ψn,k (32)

n(r) =
∑
n,k

f(εn(k))ψn,kψ∗n,k (33)

where f(εn(k)) is the Fermi function. The potential v(r, [n(r)]) is a functional of the density n(r) and is the
sum of the ionic potential vext(r), the classical coulomb potential vHartree(r, [n(r)]) = e/2

´
d3r′n(r′)/|r− r′|

and the exchange-correlation potential functional vxc(r, [n(r)]). For periodic solids the solutions of the Kohn-
Sham equation are in the form of Bloch waves. To solve the equation one starts with an initial guess for n(r)
and use it to construct the potential. Then Eq. 32 gives a set of states ψn,k and the new n(r) is calculated
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from these states. The updated density is used to construct a new potential, which is then fed back into Eq.
32. This loop is repeated until self-consistency is reached. At the end of the self-consistency cycle, we obtain
the ground state density n(r), the single electron wavefunctions ψn,k and the associated eigenvalues εn(k).
From these we can deduce a rich set of information about the device, ranging from the density of states to
the stress and forces in the structure. In this investigation we are interested in the properties of electrons,
so the two most important properties we wish to obtain are the band structure and the projected densities
of states.

The information about the band structure is already contained in the eigenvalues εn(k). With a local
atomic basis set eα, it is also easy to calculate the projected density of states. Each wavefunction ψn,k can
be spanned by the atomic orbitals ψn,k =

∑
α an,α(k)eα. The total density of states for a closed shell system

can be de�ned as

gtot(ε) =
2
Ω

∑
n

ˆ
BZ

d3k
ˆ

d3rψn,k(r)ψ∗n,k(r)δ(εn(k)− ε) (34)

=
2
Ω

∑
n,α,β

ˆ
BZ

d3k an,α(k)a∗n,β(k)Sαβδ(εn(k)− ε) (35)

where Ω is the volume of the cell, Sαβ =
´

d3r eαeβ and there are 2 spins per state. The projected density
of states onto to each atomic orbital gα(ε) and each atom gatom(ε) can be obtained from:

gα(ε) =
2
Ω

∑
n,β

ˆ
BZ

d3k an,α(k)a∗n,β(k)Sαβδ(εn(k)− ε) (36)

gatom(ε) =
∑

α∈atom

gα(ε) (37)

The total density of states provides us with the position of the resonance energies in the nanowire and their
widths. The projected density of states onto a particular InAs or InP unit cell inside di�erent parts of
the nanowire gives us information on the contribution of di�erent states to the electronic structure in these
sub-regions. This also gives us a qualitative idea on the sharpness of the interface between InAs and InP.

For more information about the theory and techniques behind Density Functional Theory calculations,
the book by R. M. Martin [26] and its references are recommended.

3.3.1 InAs and InP Structures Used For DFT Calculation

Both InAs and InP have zinc-blend structures (see Figure 12), which consists of two face-centered cubic (fcc)
lattices o� set by 0.25 of the lattice constant in each of the lattice vector directions. Due to time constraints
of the project, we will only perform DFT calculations on a �xed ionic lattice, with the lattice parameters
chosen to be the experimental lattice parameters for bulk InAs and InP. These are quoted as 6.058Å for InAs
and 5.869Å for InP [14]. To study bulk electronic properties, we used periodic boundary conditions and the
2 atom primitive fcc cell for InAs and InP with the respective experimental lattice constants.

For the InAs-InP nanowires, we use periodic boundary conditions along the length of the wire. This
is equivalent to assuming the wire is in�nitely long with repeating InAs and InP sections. This does not
model the device with �nite number of barriers exactly, but will still provide us relevant information about
the electronic structures in the InP barrier and InAs regions and at the interfaces. This is because the InP
barriers are su�ciently wide to ensure that states in the InAs wells are well localized, and thus the interaction
between neighboring wells is rather weak.

Because the nanowire is about 50nm in diameter, a DFT calculation including an entire cross-section
of the device would be too expensive. Instead, we approximate the wire by treating it as a bulk structure,
with periodic boundary conditions in both the transverse and longitudinal direction. We lose the in�uence
of the wire surfaces, but provided the properties are dominated by the bulk this approach delivers useful
information. To capture the bulk properties the (Bloch) k space mesh used in the calculation must be �ne
enough in the transverse direction. Tests on bulk InAs and InP indicate a mesh of 8 k-points in the Brillouin
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Figure 12: Zinc-blend structure.

zone along each of the lattice vectors in the transverse direction is su�ciently �ne to generate bulk like
properties.

To construct a unit cell for the nanowire, we used a 4 atom unit cell for both InAs and InP. To construct
the unit cell, we applied the transformation

T =

 0.5 −0.5 0
0.5 0.5 0
0 0 1

 (38)

to the translation vectors of the standard zinc-blend 8 atoms unit cell. We then build up the unit cell for the
device by attaching these InAs and InP cells along the z-direction (see �gure 13). We looked at the InAs-InP
junctions of various sizes. The 8 atom cell, which is the smallest InAs-InP junction we generated, has one
InAs 4 atom unit cell and one InP cell along the longitudinal z-direction. In the 16 atom cell, the InAs and
InP repeating sections are twice as long. For the 64 atom cell the device has InAs and InP sections each
about 48.5Å long. Finally the 128 atoms cell, which is designed to reproduce the setup of the experimental
double barrier device, has a 48.5Å InP barrier attached to a 145.392Å InAs well. It is important to note that
we used the experimental InAs lattice parameters for both InAs and InP regions in the wire. This is due to
the fact that a full structure relaxation for a system as large as the 128 cell would be prohibitively expensive
in our case. The di�erence in the experimental lattice parameter between InAs and InP is only about 3%,
and in the real device the majority of the nanowire is made of InAs with only thin strips of InP barriers
inserted into the wire. The use of the InAs experimental lattice parameter as the basic lattice parameter for
each of the InAs/InP sub-cells is therefore reasonable.

3.3.2 The Choice of Exchange-Correlation Functional

Care has to be taken in choosing the appropriate exchange-correlation functional vxc(r, [n(r)]) for our DFT
calculations. It is well known that both LDA (Local Density Approximation) and GGA (Generalized Gra-
dient Approximation) functionals underestimate the band gaps [14, 29], and this is particularly problematic
for semiconductors, whose gaps are usually very small. The cause of the problem in these approaches is due
to the systematic error in the treatment of exchange for the electrons [12, 13, 17, 23�25, 28]. In particular
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Figure 13: The unit cells we used in our DFT calculation. Each of the sub-cells of InAs (or InP) contains
4 atoms � 2 In and 2 As (or P). The periodic condition is demonstrated by the 8 atoms unit cell.

for InAs both LDA and GGA severely underestimates the energy of the bottom of the conduction band, and
give zero band gaps. This is illustrated in Figure 14 where LDA was used to calculate the bands for bulk
InAs using the computer program VASP3. This is also con�rmed by results from other work [14, 34].

Thus neither LDA nor GGA is suitable for our calculations. However, hybrid functionals � which improve
the treatment of exchange by combining (semi-empirically) exact Hartree-Fock exchange with exchange and
correlation from GGA � are known to give much better descriptions of band structure in materials. It has
been observed that both the B3LYP [31] and the HSE (Heyd-Scuseria-Ernzerhof) [14] hybrid functionals give
adequate band gaps for both InAs and InP [14, 34]. We therefore decided to use the B3LYP functional for
our DFT calculations. The computer program we used for the calculation is CRYSTAL, which is an ab initio
simulation package for calculation of the ground state energy, energy gradient, electronic wavefunctions and
properties of periodic systems. The B3LYP functional is implemented in CRYSTAL: for more information
please refer to the package's home page: http:www.crystal.unito.it

3.3.3 Spin-Orbit Contributions

Non-collinear spin-orbit contributions to the electronic structure becomes signi�cant for heavier elements as
the core electrons near the nucleus becomes relativistic. We investigated the e�ect of spin-orbit coupling on
the electronic structure of InAs and InP to see if we can safely omit it from our DFT calculations. For a
detailed analysis of spin-orbital contributions to various semiconductor compounds using hybrid functionals,
we refer the reader to the paper by Peralta et al. (2006) [27].

We found that (see [27]) for both InAs and InP the spin-orbital contribution splits the originally three
fold degenerate states at the Γ point at top of the valence band. The level of splitting is calculated to be 0.33

3
VASP, the Vienna Ab-initio Simulation Package, is an ab-initio quantum-mechanical molecular dynamics code using pseu-

dopotentials and plane wave basis sets developed by the VASP group of Universität Wien, Austria. For more information please
visit http:cms.mpi.univie.ac.atvasp
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InAs Band Structure Calculated with LDA

Figure 14: InAs bulk band structure calculated using LDA. Note that there is no band gap at the Fermi
energy.

eV (0.38 eV experimental result) for InAs, and 0.08 eV (0.11 eV experimental result) for InP. The splitting
is substantial especially for InAs, considering the gap is only about 0.4 eV. However there is no splitting
reported at the bottom of the conduction band, which consists of just one state at Γ. As the main focus
of our calculations is to obtain information about resonant states at the bottom of the conduction band in
InAs-InP device, what matters for us is only the correct description of the bottom of the conduction band
for both InAs and InP. Since all spin-orbit splittings happen at the top of valence band, it is a reasonable
approximation for us to omit spin-orbit splittings from our calculations.

3.3.4 The Choice of Basis Set

CRYSTAL uses an atomic orbital basis set, which in turn is spanned by a linear combination of Gaussian
functions. There are many di�erent types of standard basis set available, and we compared several well
known ones using calculations on the band structures of bulk InAs and bulk InP.

The basis sets we used in the test are described in table 5. We could only obtain the 6-331G* all electron
basis set and its variants for P. However the all electron basis sets are always more accurate than the basis
sets using pseudopotentials. The disadvantage of using an all electron basis is computational cost. However,
as P has only 15 electrons, the computational cost is still manageable. Because no approximations are made
on the ionic potentials, the all electron basis sets are compatible with other pseudopotential basis sets.

Table 6 shows the results we obtained for InAs and InP bulk using the di�erent available of basis sets. It
was observed, as expected, that in general the non-modi�ed basis sets give a slightly more accurate description
of of the band structure, and a lower total energy. However, due to the inclusion highly di�use Gaussian
functions, these basis sets are computationally more expensive, and can produce numerical instability. The
numerical stability becomes worse as the system size increases. Comparing results from the Tomi¢ version of
the m-pVDZ-PP basis set and the standard m-pVDZ-PP basis set, the Tomi¢ basis set gives a slightly lower
total energy. However the standard m-pVDZ-PP basis set gives a slightly better description of the band
gap. As a good description of the band gap is important for us, we decided to use the standard m-pVDZ-PP
basis set for both In and As, and the m-6-331G* all electron basis set for P.
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6-331G* A standard all electron atomic orbital basis set (made by linear combination
of Gaussians). No pseudopotential.

m-6-331G* Same as 6-331G* basis set except that Gaussian functions with the exponent
less than 0.12 a.u. are omitted. This reduces the number of Gaussians which
are too di�use in the basis and improves on convergence and numerical stability.

pVDZ-PP A standard pseudopotential basis set, which takes one shell (including all an-
gular momentum orbitals) below the valence shell as the semi-core electrons
and regards the rest as core electrons. Relativistic corrections are added.

m-pVDZ-PP Same as pVDZ-PP, but with the Gaussians having exponents less than 0.12
a.u. omitted.

Tomi¢ Same as m-pVDZ-PP however with exponent of the Gaussian for one of the
empty s-orbitals of In being replaced by the value of 0.25 a.u. from the original
0.170415 a.u.a This is done to make the orbital more linearly independent to
the other s-orbital which is given with Gaussian coe�cient of 0.12 a.u. due to
the omission of Gaussians with exponents less than 0.12 a.u.. This improves
numerical stability.

aPrivate communications with the authors of [34].

Table 5: The basis sets for CRYSTAL available to us for our calculations.

In Basis set As Basis set ∆E (eV) Band-gap at Γ (eV)

In
A
s
bu

lk

pVDZ-PP pVDZ-PP 0.0000 0.3859
m-pVDZ-PP pVDZ-PP 0.0252 0.5581
pVDZ-PP m-pVDZ-PP 0.0072 0.3785
m-pVDZ-PP m-pVDZ-PP 0.0815 0.5249
Tomi¢ m-pVDZ-PP 0.0635 0.5546

Experiment � 0.42
In Basis set P Basis set ∆E (eV) Band-gap at Γ (eV)

In
P
bu

lk

pVDZ-PP 6-331G*a 0.0000 1.6116
m-pVDZ-PP 6-331G* 0.0484 1.7342
pVDZ-PP m-6-331G* -0.0033 1.5859
m-pVDZ-PP m-6-331G* 0.0424 1.6806
Tomi¢ m-6-331G* 0.0307 1.7570

Experiment � 1.42

aNote that for numerical stability, one of the Gaussian exponent smaller than 0.12 a.u. for P has already been removed.

Table 6: Comparison between di�erent basis sets. ∆E is the change in total energy with basis set relative
to that for the pVDZ-PP basis set.
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InAs Bulk Band Structure

Figure 15: Band structure of bulk InAs along the line Γ to X. Note that the primitive unit cell is used.

4 Results and Discussions

We now report on the results of our calculations using both Density Functional Theory and our device
simulator. Results found using the simulator allow us to propose a speci�c device that might be tested ex-
perimentally. We �nd that the DFT calculations support the basic picture employed by the device simulator.

4.1 Density Functional Theory Calculations

4.1.1 InAs and InP Bulk

Figures 15 and 16 show the CRYSTAL calculated band structure and the projected densities of states for
bulk InAs. Figures 17 and 18 shows the band structures and projected densities for bulk InP. The band
structures are plotted along the line in Bloch space k = Γ = (0, 0, 0) to X = 2π

a ( 1
2 , 0,

1
2 ) in the reciprocal

lattice coordinates: this corresponds to a line from (0, 0, 0) to 2π
a (0, 1, 0) in Cartesian coordinates. Here a is

the lattice parameter in the z-direction, and for bulk calculations this is the experimental lattice parameters
for InAs and InP (6.058Å and 5.869Å) respectively. Due to the symmetry of the bulk, there should be no
di�erence between (0, 1, 0) and (0, 0, 1) directions in Cartesian coordinates.

The band gap for bulk InAs is measured at the Γ point to be 0.52 eV, and the gap for bulk InP is
measured also at the Γ point to be 1.68 eV. The di�erence in the gaps is thus 1.16 eV, which compares
favorably with the experimental result of about 1.0 eV [14, 27, 34]. Also noticeable for both InAs and InP
are the three-fold degenerate states at the top of the valence band at Γ point. They are the three degenerate
p-like orbitals, which will become non-degenerate if we had included spin-orbit splitting. However, there is
only one state at the bottom of conduction band. This supports our argument for omitting the spin-orbit
contributions.

4.1.2 InAs-InP Nanowires

We calculated the projected densities of states and band structures for the 8 atom unit cell, the 16 atom
unit cell, the 64 atom unit cell and the 128 atoms unit cell InAs-InP nanowires (see �gure 13). The band
structures are plotted from k = Γ to the second Brillouin zone boundary in kz direction at 2π

a (0, 0, 1) in
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Figure 16: Total and projected densities of states for bulk InAs.
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Figure 17: Band structure of bulk InP along the line Γ to X. Note that the primitive unit cell is used.
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Figure 18: Total and projected densities of states for bulk InP.
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Figure 19: Band structures of InAs-InP nanowire having repeating units of 1 InAs unit cell and 1 InP unit
cell (8 atoms unit cell), 2 InAs and 2 InP (16 atoms) and 8 InAs and 8 InP (64 atoms) respectively.

Cartesian coordinates. Here a is the length of the unit cell along z-direction. This means a = 12.116Å,
24.232Å, 96.928Å and 193.856Å for the 8, 16, 64 and 128 atoms unit cell calculations respectively.

Going from the 8 atom unit cell calculation to the 64 atoms unit cell calculation, the lengths of InAs well
and the InP barrier increase. If one can approximate the well-barrier device as a periodic system of square
wells, then one would expect that reducing the width of the wells would push the discrete resonance states
in the well apart and raise the energy of lowest resonance (see below). A narrower potential barrier allows
more tunneling between wells, thereby increasing the contribution of states from other wells to its resonance
states, making them broader. This is demonstrated from the comparison of band structure plots for the 8,
16 and 64 atoms unit cell calculations shown in �gure 19. As the well and barrier widths increase, the bands
�squeeze� together, and the lowest conduction band narrows signi�cantly, this being particularly evident for
the 64 atom unit cell nanowire. This very narrow band corresponds to a resonant state in the InAs well.

To study the resonances in more detail, we looked at the projected densities of states for the 64 atoms
unit cell system (see Figures 20, 21 and 22). The densities of states are calculated by sampling 30 k-points
in the Brillouin zone along kz-direction from Γ point. We need many points along the direction in Bloch
space corresponding to the longitudinal direction of the wire because it is the bottom tip of the conduction
band that is most important to conduction in the device, and it needs to be described accurately. On the
other hand, due to the symmetry of the nanowire in the transverse direction, states corresponding to di�erent
k-points in the transverse direction can be regarded as independent channels. We are thus able to look at one
channel at a time by sampling lines along the kz direction starting from di�erent k-points in the transverse
directions. As the number of charge carriers in the device will be very low, and because the Γ point has the
minimum energy at the bottom of the conduction band, it is expected that most relevant channel for the
device would be the Γ channel. For the projected densities of states, we project the total density of states
(see equation 37) onto the a set of sub-unit cells of 4 atoms each corresponding to the unit cells of InAs (or
InP) in the middle of each well (or barrier) region and at the interface.

From the projected density of states plots (�gures 20, 21 and 22), for the 64 atoms system, we observe
one narrow state is formed at the bottom of the conduction band, and three narrow bands are formed at
the top of the valence band. The narrow peak at the bottom of the conduction band can be understood
as a resonance state inside the InAs well. The narrow peaks at the top of the valence band indicates that
in the InAs-InP nanowire, the InAs region not only has a lower conduction band, but also a higher valence

28



4 RESULTS AND DISCUSSIONS

-0.2 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12
E (Hartree)

0

50

100

150

200

In
As

 (I
nt

er
fa

ce
) P

DO
S InAs (interface)

Fermi Level

-0.2 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12
0

50

100

150

200

In
As

 (m
id

dl
e)

 P
DO

S

InAs (middle)
Fermi Level

Figure 20: The projected densities of states from the 64 atoms unit cell calculation for the InAs unit cells
at the middle of InAs region and at the interface of the nanowire device.
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Figure 21: The projected densities of states from the 64 atoms unit cell calculation for the InP unit cells at
the middle of InP region and at the interface of the nanowire device.
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Figure 22: The total density of states from the 64 atoms unit cell calculation.

band than the InP region (as is illustrated in Figure 5). The states at the top of the valence bands do not
have a corresponding state of the same level in the InP region, and this forms an e�ective barrier for the
electrons just as is the case for the bottom of the conduction band. It may be helpful to picture this as a
potential barrier at the bottom of conduction band for holes (for holes the band structure is up-side-down).
The drop in the height in the resonance peaks as we move from the interface to the middle of the InP region
(Figure 21) indicates that the magnitude of the resonance wave functions starts to drop in the barrier, as
expected. As these peaks remain throughout the InAs region, it is further evidence that these peaks are
indeed resonance states formed at the bottom of the InAs well. The width ∆E0 of the resonance peak at
the bottom of conduction band for the 64 atoms unit cell device can be measured directly from the total
density of states, and ∆E0 = 0.037 eV.

Figures 23, 24, 25 and 26 show the band structure and projected densities of states calculated for the
128 atoms unit cell nanowire. The di�erence in the setup between the 128 atom unit cell system and the
64 atom unit cell case is the width of the InAs well. They both have InP barriers with width of 48.5Å, but
the 128 atom unit cell nanowire has three times the width of the well as the 64 atom case. The di�erence in
the electronic properties caused by widening the well width can be observed from the projected densities of
states plots. The 128 atom unit cell system case has more narrow states at the bottom of conduction band
and top of the valence band. As one increases the well width the separation between the discrete resonance
states decreases (in the case of in�nite square the separation between resonances is inversely proportional to
the square of the well width). The widths of the narrow resonance states however did not change much for
the 128 atoms unit cell case: ∆E0 = 0.022 eV, ∆E1 = 0.019 eV and ∆E2 = 0.034 eV for the three resonance
states from the bottom of the conduction band. This is because the width of the resonances is determined
by the width of the barrier.

One way to estimate the band o�sets is from the average potential in the heterostructure as a function
of position[21]. However, time has not permitted this to be done. We just note that the presence of sharp
resonances at the band edges of the heterostructures indicates that the band o�sets are at least qualitatively
as expected as they are generating the relevant e�ective barriers.

The rate of which the the resonance peaks drop in height from the interface region of InP into the the
middle of the barrier gives a qualitative measure of how hard (i.e. how square the well is) the InAs-InP
interface is. For a strictly square well, the amplitude of wavefunctions is expected to drop exponentially
with respect to z. A softer interface would result in the peaks to drop in a slower pace as we move into the
barrier.
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128 atoms cell InAs-InP Band Structure

Figure 23: Band structure of the 128 atoms unit cell InAs-InP nanowire.
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Figure 24: The projected densities of states from the 128 atoms unit cell calculation for the InAs unit cells
at the middle of InP region and at the interface of the nanowire device.
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Figure 25: The projected densities of states from the 128 atoms unit cell calculation for the InP unit cells
at the middle of InAs region and at the interface of the nanowire device.
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Figure 26: The total density of states from the 128 atoms unit cell calculation.
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Figure 27: Current versus voltage for two single barrier devices at room temperature. The blue curve
corresponds to a barrier width of 70Å, and the red curve to a barrier width of 800Å. A carrier concentration
of 10−7−3 was assumed, and temperature is 300K.

4.2 E�ective mass approximation calculations

First we use our device simulator to reproduce the experimental results of Björk[4] shown in Figure 4 as a
way to validate our model. The experiments involve devices with one barrier and with two barriers (one
well). We then use the simulator to predict properties of the two well (three barrier) device that we wish to
use as a chemical sensor.

4.2.1 Single barrier devices

The results show in Figure 27 are to be compared with the left panel of Figure 4. We see good qualitative
agreement between the theoretical and experimental results, notably the four orders of magnitude increase
in current on going from the thin barrier to the thick barrier. Also the exponential dependence of the current
on the bias is clearly visible in both cases. For the theoretical calculations we used a carrier concentration
of 10−7−3, which is an order of magnitude greater than our previous estimate based on the conductivity of a
barrier free wire. Even so, our currents are still a little smaller than the experimental ones. The origin of this
discrepancy is not fully understood, though there are a number of possible causes, including uncertainties in
the dimensions of the device, and the e�ect of roughness at the interfaces.

4.2.2 Double barrier devices

We now consider a resonant device obstructed using two barriers with a well in between. The barriers have
a thickness of 50Å, and the well has a width of 150Å. Comparing Figure 28 with the experimental data in
the right panel of Figure 4, we see that our calculated currents are somewhat greater than the experimental,
and the width of the resonances somewhat larger. By reducing the carrier concentration to 5 × 10−9−3 we
get fairly close to the experimental result. Once again we note that there are discrepancies that are hard
to fully account for because of a number of features that are hard to introduce into the model (such as
roughness), or are not precisely de�ned in the experiments (such as the precise thicknesses of the barriers
and well). However, we view the level of agreement as su�ciently encouraging to allow simulations to be
used to suggest working devices.

It is possible on the basis of the calculations to o�er an explanation for the shape of the resonance
observed. From Figure 28 we see that the position of the left-hand edge of the resonant pro�le is sensitive to
the carrier concentration, while its width is not. This edge corresponds to a bound state in the well moving
down under the in�uence of the bias until it overlaps with the tail of the Fermi-Dirac distribution of the
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Figure 28: Current versus voltage for a double barrier device at 4.2K for two carrier concentrations. The
red curve corresponds to a carrier concentration of 10−8−3 and the blue curve to 5× 10−9−3.

Figure 29: This �gure shows the transmission probability as a function of energy for a range of bias voltages.
A delta function approximation to the transmission is good, with the peak transmission being strongly
dependent on voltage.
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Figure 30: This �gure shows how the transmission varies as the wire radius is increased from 200Å (left) to
300Å (right).

electrons in the left-hand lead. Therefore the width of the left edge is governed by the electron temperature,
which is the same for both pro�les. The position of the edge is de�ned by the chemical potential of the
electrons in the left-hand lead, which increases as the doping levels increase. Thus we see the reduced bias
required for a current �ow when we increase the carrier concentration.

The right-hand edge is de�ned by the bias at which the bound state in the well drops below the band
edge in the left-hand lead, which is why it is independent of the carrier concentration. Between the two
edges there is a steady drop in the current. This is because of the reduced transmission through the device
induced by the applied bias. The transmission through the lowest bound state as a function of the applied
bias is shown in Figure29. There we see a steady reduction in the transmission as the bias is increased.

4.2.3 Triple barrier devices

Here we consider the properties of the full device. The purpose is to identify a set of wire, barrier and well
widths, and a dopant density that together constitute a promising candidate device to be tested experimen-
tally.

Wire thickness

The radial part of the electronic wavefunctions is quantized, and de�nes channels (for elastic transmission)
as it is invariant as the electron travels down the wire. The minimum energy for a given channel is set by
the radius of the wire, thus the main e�ect of making the wire narrower is to increase the spacing between
channels: this can be seen from Figure 30 where the transmission channels are much more closely spaced
for a wire of radius 300Å than for a wire of radius 200Å. There is also a slight shift down in energy of the
resonances as the wire radius is increased. It is unclear precisely how large we require the splitting between
channels to be. The criterion is that it must be large enough to prevent excitation between channels within a
given well. However, the ability for electrons to switch channel will depend on the nature of the coupling to
the odorant. Clearly, the bigger the splitting, the safer we are. Furthermore, narrower wires (which generate
larger splittings) have stronger coupling of the odorant to the electrons inside the wire as the distances
involved are smaller. So on both counts we would like the wire to be as thin as possible. 200Å is probably
a reasonable target for current technology[3].

Outer Barriers

The main in�uence of the outer barriers is to set the width of the resonances in the wells. The broadening
is due to the interaction of the resonances with the continuum of states in the leads. From Figure 31 we see
that the peaks keep their positions but narrow substantially as the outer barrier widths are changed from 10Å
to 20Å. The width of the resonances determines the resolution of our device: the wider the resonance, the
larger the bias that needs to be applied to suppress elastic transmission through the device, and consequently
the larger the di�erence in vibrational frequency between two molecules that is needed in order for them to
be discriminated. However, making the resonances narrow reduces the electric current that can pass through
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Figure 31: These �gures show the e�ect of varying the outer barriers. Plotted is the variation of electron
transmission with respect to the energy of the incident electron with no bias applied. The well width is 150Å
and the middle barrier width is 20Å in both cases. In the left panel the outer barrier width is 10Å while in
the right panel it is 20Å.
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Figure 32: These �gures show the e�ect of varying the middle barrier width. Plotted is the variation of
electron transmission with respect to the energy of the incident electron with no bias applied. The well
width is 150Å and the outer barrier width is 20Å in both cases. In the left panel the middle barrier width
is 10Å while in the right panel it is 20Å.

the device. Thus a compromise is needed between su�ciently wide resonances (narrow outer barriers) to
support a measurable current, and su�ciently narrow resonances to enable discrimination of molecules. For
resolution purposes (see Table 1) we would like the resonances to have a width no larger than 0.01eV. From
Figure 31 a barrier width of 20Å looks su�cient. However, as we shall see below when we compute the I-V
curves, a slightly wider barrier is needed.

Middle Barrier

The main in�uence of the middle barrier is to control the interaction of the localized states in each
well with each other. This interaction is seen as a splitting of the peaks in the transmission: the larger the
splitting, the greater the interaction. This is due to the formation of bonding and anti-bonding combinations
of the resonance wavefunctions when they overlap slightly. From Figure 32 we see that increasing the middle
barrier width from 10Å to 20Å reduces the splitting considerably. Since the splitting in�uences the resolution
of the device, we need it to be smaller than the tolerance we are imposing (0.01eV). From Figure32 we see
that a middle barrier width of 20Å is barely su�cient. Increasing the central barrier width to 25Å brings
the splitting down to 0.0025 eV, which is adequate.

Wells

The width of the wells determines two important parameters: the separation between the resonances
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Figure 33: These �gures show the variation of electron transmission with respect to the energy of the incident
electron with no bias applied. All the barrier widths are 30Å in both cases. In the left panel the well width
is 150Å while in the right panel it is 100Å. Note that the maximum transmission in each channel should be
1. The apparent drop in maximum transmission below 1 in the left panel is a result of a lack of resolution
of the plots.

Dopant Density (Å−3) Chemical Potential (eV)

10−8 0.011
10−7 0.12
10−6 0.73

Table 7: Variation of electron chemical potential with dopant density at room temperature.

and the energy of the lowest resonant state. Note that the splitting between channels is not e�ected as
this is set by the radius of the wire (see above). We require the separation between resonances to be larger
than the vibrational energies of the molecules we would like to detect (of order 0.1eV) in order to prevent
vertical transitions within a well. This requirement sets a maximum width for the wells (the wider the well,
the narrower the spacing). Note that this requirement is made more complicated by the fact that di�erent
resonances belong to di�erent channels, so transitions will only be possible if the coupling to the oscillating
molecules couples electrons to transitions between these channels. We also require the lowest resonant state
to have an energy su�ciently low that it can be populated by electrons from the lead (which depends on
the electron chemical potential and hence dopant density - see Table 7). This sets a minimum width for the
wells (the narrower the well, the higher in energy the lowest resonance).

Both e�ects are visible in Figure 33. All three barriers are given a width of 30Å. We see that on decreasing
the well width from 150Å to 100Å the lowest resonance shifts from about 0.06eV to about 0.087eV (a change
of about 0.03eV - c.f. Table 4), and the density of resonances decreases at the lower energies. The most
interesting feature is the opening up a gap in transmission above 0.2eV which could produce improved
resolution. In both cases that there will be di�culties with charge injection with typical dopant densities
which result in carrier densities of order 10−8−3 (see Table 7). It may be possible to overcome this problem
by the application of a gate bias (see below). However, it strongly suggest that the wells should not be made
any narrower than 100Å.

In�uence of the bias on transmission

In the absence of a bias, provided the two wells are equivalent, there will be energies at which at incoming
electron encounters bound states in both wells with the same energy, thereby providing a high transmission
path through the whole device. When a bias is applied to our device, the potential in the left and right wells
start to di�er from each other. If the bound states in the wells were totally uncoupled from each other, then
these would shift apart in energy as the potential di�er. Thus an electron will in general no longer encounter
states in both wells with the same energy, and the transmission will drop substantially. This can be seen by
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Figure 34: These �gures show the transmission as a function of the electron energy, and refer to a nanowire
with outer barrier widths of 20Å, center barrier width of 25Å, and well widths of 100Å. In the left panel the
bias is zero, while in the right panel the bias is 0.1V.
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Figure 35: These �gures shows the variation of electric current with bias. The left panel has results at two
temperatures (4K and 300K), and refers to a nanowire with outer barrier widths of 20Å, center barrier width
of 25Å, and well widths of 100Å. The right panel has results for 300K with wider barriers (all 30Å).

comparing the left panel (zero bias) and right panel (bias of 0.1V) in Figure 34. If there is a molecule nearby
with a vibrational frequency f such that hf equals the o�set in energy of bound state, then an exchange
of energy between the electron and that vibrational mode can restore resonance. However, the transmission
will still be well below 1 because the probability of the electron exciting the molecule is generally much less
than 1.

Temperature

It is very important that our device operate properly at room temperature. Indeed this is the reason for
introducing two wells to �lter the electron energy. Increasing the electron temperature broadens the range
of states populated by electrons in the leads, which causes broadening of the I-V curve. From the left panel
in Figure 35 we see that at low temperature (4K) there is a single signi�cant peak in the current at a bias of
about 0.22V. This corresponds to when the resonances are brought low enough by the bias to allow electron
injection, but the bias is not yet big enough to completely disrupt the resonance itself (see above). At 300K
we see a drop in the current at low voltages as the bias increases because the resonances in the two wells are
moving out of alignment. This is what we require for inelastic tunneling spectroscopy so that the presence of
an oscillating molecule possessing a mode with a frequency that matches the splitting between the resonance
levels can produce an increase in current, and hence be detectable. As the bias increases, the current picks
up again as more resonances become available, and then drops o� sharply as the resonances drop below the
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Figure 36: This �gure displays the current as a function of voltage for two values of the carrier density in the
leads. There is roughly factor of 10 increase in the current for a factor of 10 increase in the carrier density.
All calculations are at 300K with well widths of 100Å, outer barrier widths of 20Å, and middle barrier width
of 25Å.

energy of the incoming carriers.
At 4K the resolution of the device is of order 0.05eV, whereas at 300K it is closer to 0.1eV. As discussed

above, this is not su�cient. In the right panel of Figure 35 we show the I-V curve at 300K with wider
barriers (all 30Å). The resolution is improved (the current drops o� faster with increasing bias), though still
below the threshold we would ideally like. The current has dropped by an order of magnitude as well, so
there is a high price for this increased resolution.

Carrier Density

The higher the dopant density the higher the electron chemical potential in the leads, and consequently
the easier it is to populate the resonant states in the wells. The I-V curves in Figure 36 are for nanowires
at 300K with well widths of 100Å, outer barrier widths of 20Å, and a middle barrier width of 25Å. We see
that there is roughly factor of 10 increase in the current for a factor of 10 increase in the carrier density,
with no obvious loss of resolution following from the increased carrier density. Note that for con�gurations
with narrower wells (and hence localized states at higher energy) the ratio of increased current to increased
carrier concentration can be much higher because of the exponential variation of carrier concentration with
energy far above the chemical potential.

5 Conclusions

From the above we conclude that a promising device would have outer barrier widths of 30Å, a middle barrier
width also of 30Å, and well widths of 100Å. A dopant density of 10−7Å−3 looks good, but probably cannot
be obtained by the natural carbon doping. It might be possible to increase the carrier density in the active
region (where the wells and barriers are) by the application of a gate voltage[11]: see Figure 37. Note the
gate will have to extend under the leads for a distance greater than the electron inelastic mean free path to
ensure that carriers are thermalized near the barriers.
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Figure 37: A cartoon indicating the use of a gate to increase the density of carriers in the active region.
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6 List of Symbols, Abbreviations and Acronyms

V Bias
h, ~ Planck's constant
e Electronic charge
ν Vibrational frequency
D Donor level
A Acceptor level

∆E Di�erence in energy between donor and acceptor
I-V Current versus voltage

InAs, InP Indium Arsenide, Indium Phosphide
me Mass of electron
m∗W E�ective mass of electron in InAs (well)
m∗B E�ective mass of electron in InP (barrier)
Ry Rydberg (13.6058 eV)
a0 Bohr radius (0.529177Å)
E, ε Electron energy
eV Unit of energy (1.60219× 10−19J)
ε0 Permittivity of free space
εr Relative permittivity
ρ Electron density
ρ0 Reference electron density
v(z) One dimensional e�ective potential
E Electric �eld
µ Chemical potential
ψ Wavefunction

R,Φ, Z Components of the wavefunction
δ Mesh point separation
γ Charge decay distance
α E�ective total electron wave vector
q Longitudinal electron wave vector
k Radial electron wave vector
m Angular quantum number
Jm Bessel function of the �rst kind
tN Transmission amplitude
f Fermi function
T Transmission
n(r) Electron density
εn(k) Band energies
VHartree Hartree potential
Vxc Exchange and correlation potential
g(ε) Density of states
IETS Inelastic Electron Tunneling Spectroscopy
RTD Resonant Tunneling Diode
TBDW Triple Barrier Double Well
NDIR Nondispersive Infrared
DFT Density Functional Theory
LDA Local Density Approximation
GGA Generalized Gradient Approximation
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